20-24 January 2025
To foster international participation, this course will be held online
Topis: Generalised Additive Models in R; a data-driven approach to estimating regression models
Most of the statistical methods you are likely to have encountered will have specified fixed functional forms for the relationships between covariates and the response, either implicitly or explicitly. These might be linear effects or involve polynomials, such as x + x2 + x3. Generalized additive models (GAMs) are different; they build upon the generalized linear model (GLM) by allowing the shapes of the relationships between response and covariates to be learned from the data using splines. Modern GAMs, it turns out, are a very general framework for data analysis, encompassing many models as special cases, including GLMs and GLMMs, and the variety of types of splines available to users allows GAMs to be used in a surprisingly large number of situations. In this course we’ll show you how to leverage the power and flexibility of splines to go beyond parametric modelling techniques like GLMs.
The course is aimed at at graduate students and researchers with limited statistical knowledge; ideally you’d know something about generalized linear models, but we’ll recap what GLMs are, so if you’re a little rusty or not everything mentioned in a GLM course made sense, we have you covered.
Participants should be familiar with RStudio and have some fluency in programming R code, including being able to import, manipulate (e.g. modify variables) and visualise data. There will be a mix of lectures, in-class discussion, and hands-on practical exercises along the course. From running the course previously, knowing the difference between "fixed" and "random" effects, and what the terms "random intercepts" and "random slopes" are, will be helpful for the Hierarchical GAM topic, but we don't expect you to be an expert in mixed effects or hierarchical models to take this course.
1. Understand how GAMs work from a practical view point to learn relationships between covariates and response from the data,
2. Be able to fit GAMs in R using the mgcv package,
3. Know the differences between the types of splines and when to use them in your models,
4. Know how to visualise fitted GAMs and to check the assumptions of the model.
Sessions from 14:00 to 20:00 (Monday to Thursday), 14:00 to 19:00 on Friday (Berlin time). From Tuesday to Friday, the first hour will be dedicated to Q&A and working through practical exercises or students’ own analyses over Slack and Zoom. Sessions will interweave mix lectures, in-class discussion/ Q&A, and practical exercises.
Monday– Classes from 2-8 PM Berlin time
Tuesday– Classes from 2-8 PM Berlin time
Wednesday– Classes from 2-8 PM Berlin time
Thursday– Classes from 2-8 PM Berlin time
Friday– Classes from 2-7 PM Berlin time
Should you have any further questions, please send an email to info@physalia-courses.org
Cancellation Policy:
> 30 days before the start date = 30% cancellation fee
< 30 days before the start date= No Refund.
Physalia-courses cannot be held responsible for any travel fees, accommodation or other expenses incurred to you as a result of the cancellation.